If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7v2 + 9v = 6 Reorder the terms: 9v + 7v2 = 6 Solving 9v + 7v2 = 6 Solving for variable 'v'. Reorder the terms: -6 + 9v + 7v2 = 6 + -6 Combine like terms: 6 + -6 = 0 -6 + 9v + 7v2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.8571428571 + 1.285714286v + v2 = 0 Move the constant term to the right: Add '0.8571428571' to each side of the equation. -0.8571428571 + 1.285714286v + 0.8571428571 + v2 = 0 + 0.8571428571 Reorder the terms: -0.8571428571 + 0.8571428571 + 1.285714286v + v2 = 0 + 0.8571428571 Combine like terms: -0.8571428571 + 0.8571428571 = 0.0000000000 0.0000000000 + 1.285714286v + v2 = 0 + 0.8571428571 1.285714286v + v2 = 0 + 0.8571428571 Combine like terms: 0 + 0.8571428571 = 0.8571428571 1.285714286v + v2 = 0.8571428571 The v term is 1.285714286v. Take half its coefficient (0.642857143). Square it (0.4132653063) and add it to both sides. Add '0.4132653063' to each side of the equation. 1.285714286v + 0.4132653063 + v2 = 0.8571428571 + 0.4132653063 Reorder the terms: 0.4132653063 + 1.285714286v + v2 = 0.8571428571 + 0.4132653063 Combine like terms: 0.8571428571 + 0.4132653063 = 1.2704081634 0.4132653063 + 1.285714286v + v2 = 1.2704081634 Factor a perfect square on the left side: (v + 0.642857143)(v + 0.642857143) = 1.2704081634 Calculate the square root of the right side: 1.127123846 Break this problem into two subproblems by setting (v + 0.642857143) equal to 1.127123846 and -1.127123846.Subproblem 1
v + 0.642857143 = 1.127123846 Simplifying v + 0.642857143 = 1.127123846 Reorder the terms: 0.642857143 + v = 1.127123846 Solving 0.642857143 + v = 1.127123846 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.642857143' to each side of the equation. 0.642857143 + -0.642857143 + v = 1.127123846 + -0.642857143 Combine like terms: 0.642857143 + -0.642857143 = 0.000000000 0.000000000 + v = 1.127123846 + -0.642857143 v = 1.127123846 + -0.642857143 Combine like terms: 1.127123846 + -0.642857143 = 0.484266703 v = 0.484266703 Simplifying v = 0.484266703Subproblem 2
v + 0.642857143 = -1.127123846 Simplifying v + 0.642857143 = -1.127123846 Reorder the terms: 0.642857143 + v = -1.127123846 Solving 0.642857143 + v = -1.127123846 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.642857143' to each side of the equation. 0.642857143 + -0.642857143 + v = -1.127123846 + -0.642857143 Combine like terms: 0.642857143 + -0.642857143 = 0.000000000 0.000000000 + v = -1.127123846 + -0.642857143 v = -1.127123846 + -0.642857143 Combine like terms: -1.127123846 + -0.642857143 = -1.769980989 v = -1.769980989 Simplifying v = -1.769980989Solution
The solution to the problem is based on the solutions from the subproblems. v = {0.484266703, -1.769980989}
| 37-40=7x | | -130=5(3k-8) | | 3x-2=2(x-5) | | 6-10n=-4 | | 98=7(8+x) | | 4x^2+49= | | -2(x+3)-18=-8-4 | | 8n^2-9n-6=-7 | | 3(-6k+6)=126 | | 8(3s+7)=248 | | -5(1+2a)=-85 | | X^2-3=4x+9 | | 24-8x=-5x | | 2.4x-1=3.8 | | 7(2l+8)=2 | | 3y-15=y+13 | | 177=-3(-7n-5)+6n | | 3*(2x-5)-2*(5x+4)=7*(2x-1)-(3x+1) | | .33x^2-3=0 | | (D-8)(d-2)= | | 53=45q | | (5x-15)+9=2x+9 | | 25(x)=5x^2-3 | | -6(-1-7x)=216 | | -460=8(8k+7)-4 | | .9y-3=1.4y+6 | | 5(5)=y-9 | | 112=-7(2b-4) | | .3x+2=.6x-10 | | 5(4)=y-9 | | -8(n-6)=96 | | 45x^2-28x-5=0 |